Livestock potential of Australian species of *Acacia*

ROBYN A. DYNES1 AND ANTHONY C. SCHLINK1

1CSIRO Livestock Industries, Private Mail Bag 5, Wembley, Western Australia 6913
Email: Robyn.Dynes@csiro.au

SUMMARY

Trees and shrubs have long been considered important for the nutrition of grazing and browsing animals in Australia, particularly where the quantity and quality of pastures are poor for long periods. The economic or feeding value of *Acacia* species for animal production will depend on when the nutrients are available (i.e. does foliage/seed/pod production match feed gap or drought?) and the concentrations of essential nutrients and secondary compounds in foliage, seeds or pods.

The feeding value of any forage is a function of a number of characteristics of the species, including its availability, accessibility, nutrient availability, chemical composition and presence or absence of secondary compounds. The accessibility of foliage and/or seeds and pods on acacia trees and shrubs is likely to limit the performance of grazing ruminants, although the potential exists to select lines more suited to grazing species. Forage digestibility is an important component of nutritive value, but only limited data exist for Australian *Acacia* species. The digestibility of *Acacia aneura* is reported to be between 39% and 64%, suggesting that there are lines suitable for animal production. Mineral composition of Australian acacias varies considerably between species, ranging from toxic to inadequate for livestock production. Plants that grow in inhospitable environments commonly contain secondary compounds which play a role in plant survival. Acacias are reported to have a wide range of secondary compounds including tannins, oxalates, cyanides, saponin, amines, alkaloids, fluorocacetate and other unidentified toxins. The level and presence varies with both species and plant part. Options for reducing the impact of secondary compounds are discussed.

Utilisation of acacias in farming systems could be improved through selection of species to provide feed for livestock during feed gaps and droughts, as long as issues of fodder accessibility and secondary compounds are overcome. An effective selection process will require screening a very large number of samples to determine plant quality. Near-infrared reflectance spectroscopy (NIR) is a rapid, inexpensive and accurate method and requires only small samples of plant material.

INTRODUCTION

Trees and shrubs have long been considered important in the nutrition of grazing and browsing animals in Australia, particularly where the quantity and quality of pastures are poor for long periods (Lefroy et al. 1992). Foliage from trees and shrubs has the potential to provide both protein and energy supplements during the annual feed gap or during drought (McMeniman and Little 1974; Bhattachrya 1989; Reed et al. 1990). Several species of *Acacia* are recognised by graziers for their feeding value during drought (Chippendale and Jephcott 1963; Everist 1969). The economic value of these species to animal production will depend on when the nutrients are available (i.e. does foliage/seed/pod production match feed gap or drought?) and the concentrations of essential nutrients and secondary compounds.

Investigations of the potential of trees and shrubs (particularly acacias) as fodder sources for livestock in Australia has been limited to the more widespread, better-known fodder species such as Mulga (*Acacia aneura*). The accumulated data are now sufficient for *A. aneura* to become incorporated into pasture grazing systems models (Hall et al. 2000). For most acacia species there are limited or no data, making it impossible to select and exploit variation within and between species to maximise animal productivity.

This paper addresses the potential of Australian species of *Acacia* for selection for animal production, their nutritional value, and the opportunities for incorporating them into grazing systems. It also looks at intraspecific variation in feeding value, secondary compounds and how the secondary compound issues have been addressed for ruminant livestock.

FEEDING VALUE OF *ACACIA*

Feeding value of any forage is a combination of dry matter availability (and accessibility) and the value of the ingested dry matter for use by the grazing animal (nutritive value, NV). Variation in voluntary feed intake (VFI) accounts for 50% of the variation in feeding value of forages (Ulyatt 1973). As a consequence, any characteristics of the feed which affect intake and the ease of harvesting are critical to the value of the feed for animal production. A number of physical and chemical factors determine both actual intake and utilisation.
Accessibility

The growth architecture of acacia trees and shrubs is likely to limit access by grazing ruminants. Animals can increase intake rate to compensate partially for a reduction in bite size associated with browsing (for review see Ungar 1996), but usually small bite size cannot fully compensate for harvesting difficulties. However, litter fall from acacias (foliage plus fruit) can be as high as 7 tonne/ha/year, suggesting that the quality of litter should be assessed in any selection program. Management by seasonally controlling stocking rates, lopping, or cutting-and-carrying are options to increase fodder accessibility to the animal (Goodchild and McMeniman 1987).

Digestibility

Digestibility (dry matter digestibility, DMD) of forage is one of the measures used to describe the NV of forage. It is the proportion of the feed that is not excreted in the faeces and, although a simple method, large scale in vivo experiments are very expensive. Laboratory-based estimates of animal digestibility (in vitro dry matter digestibility IVD) are rapid and relatively inexpensive. Growth and production can be predicted by using digestibility, to calculate megajoules (MJ) of metabolisable energy (ME) per kg feed dry matter (M/D) (Standing Committee on Agriculture 1990).

The IVD of acacia foliage has been determined for only a small percentage of the Australian species but available data indicate that it is relatively low, ranging from 28.9% to 55.0%. The lower values have been recorded for the phyllodinous species (Gohl 1981; McDonald and Ternouth 1979; McLeod 1973; McMeniman et al. 1981; Skerman 1977; Vercoe 1986; Craig et al. 1991). This relatively low DMD is probably associated with the high lignin content of the cell wall; fibre digestibility is inversely related to lignin content of the fibre (Van Soest 1982). Craig et al. (1991) found that digestibility differed between shoots and phyllodes as well as with season and that these differences varied between species.

Where forages have low digestibility, low metabolisable energy and high fibre values, then theoretically a grazing animal can still grow by increasing intake. In reality, when IVD falls below 55%, physical limitations on the rate of eating, rate of digestion and passage through the gastrointestinal tract mean that intake is restricted and live weight loss is inevitable (calculated from Standing Committee on Agriculture, 1990).

Mulga is the only Australian acacia so far subjected to detailed in vivo digestibility studies in Australia, although Acacia saligna has been studied extensively overseas. Mulga has an in vivo digestibility of 39-64.5% (Gartner and Niven 1978; Goodchild and McMeniman 1987; Prichard et al. 1992), suggesting scope for selection of lines suitable for animal production.

Digestibility can be improved by supplementation and ensiling. Digestibility of A. aneura was increased from 46.8 to 58.1% by the addition of phosphorus and molasses (McMeniman 1976). Prichard et al. (1992) showed a 3.4% increase in DMD but a change in nitrogen balance from -0.52 to 1.28 g/day with the use of polyethylene glycol and mineral supplement in the diet to reduce the influence of tannins on animal production. Acacia saligna is grown extensively overseas and animal studies have shown DMD ranging from 31.3% to 54.4% (Howard et al. 2001; Salem 2001; Abou El Nasr et al. 1996) with ensiling improving digestibility to 63.4% (Abou El Nasr et al. 1996). Australian studies by Howard et al. (2001), have reported the lowest digestibilities, 23.1% units lower than international studies, suggesting that there is a marked difference between the A. saligna accessions under study in animal experiments. Acacias grow in diverse environments, including salt affected areas so, when reviewing in vivo digestibility figures, consideration should be given to the soluble mineral content, the non-protein nitrogen and tannin content, as well as the traditional link between fibre content and digestibility. In areas where acacias will be utilised, however, supplementation and ensiling are unlikely to be cost effective and selection of suitable lines of acacias is required.

Studies of the Oxford Gliricidia collection showed large variation in both leaf in vitro DMD and nitrogen content in the 26 lines grown in the same environment (Schlind et al. 1991). Nitrogen content ranged from 3.00 to 4.15%, DMD from 67 to 80% and dry matter yield from 2.1 to 6.5 tonnes/ha with no relationship between dry matter yield and nutritional parameters. This poor correlation between plant yield and nutritional quality indicates that nutritional quality should be taken into account in the selection of species for animal usage.

Chemical composition

A selection of chemical compositions of Australian acacia species is presented in Table 1. Mineral concentrations also vary significantly between species, ranging from toxic to inadequate for livestock production. The ash in forage has no energy value but the apparent digestibility will be accounted for. Using DOMD (digestible organic matter in the feed dry matter) corrects for high ash content; for example, hay with a 60% DMD has an DOMD of 55% whereas in a sample of Arríplex (salt bush: total ash 30%, soluble ash 24%) still with a digestibility of 60%, DOMD would now be 36% and ruminants would not be able to eat enough organic matter to prevent live weight loss (Masters et al. 2001).

Vercoe (1986) and Craig et al. (1991) reported phosphorus deficiencies in most acacias tested, leading to an imbalance in the calcium to phosphorus ratio in foliage (Table 2). Similarly, for most species the levels of potassium, sodium and sulphur were low (Vercoe 1986), but Craig et al. (1991) found that most acacias tested had adequate sodium levels. In the latter case, differences between species should be treated with caution, as the plant material was collected from the wild. Such differences may reflect differences in soil and growing conditions more than differences between species. In a study of the mineral composition of foliage of some species of Acacia, Vercoe
Livestock potential of Australian species of Acacia

TABLE 1

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>CRUDE PROTEIN g/kg</th>
<th>ETHER EXTRACT g/kg</th>
<th>CRUDE FIBRE g/kg</th>
<th>ASH g/kg</th>
<th>OMD In vivo g/g</th>
<th>OMD in vivo g/100 g</th>
<th>DMD g/100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. aneura</td>
<td>92-203</td>
<td>21-56</td>
<td>238-366</td>
<td>34-69</td>
<td>35-63</td>
<td>35-50</td>
<td></td>
</tr>
<tr>
<td>A. cambagei</td>
<td>109-133</td>
<td>31-59</td>
<td>137-159</td>
<td>110-140</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. pendula</td>
<td>132-164</td>
<td>255-296</td>
<td>56-89</td>
<td>43</td>
<td>43-50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. farnesiana</td>
<td>150-242</td>
<td>20-60</td>
<td>100-223</td>
<td>44-78</td>
<td>54-68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. albida</td>
<td>171-197</td>
<td>15-30</td>
<td>124-215</td>
<td>64-86</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. seyal</td>
<td>111-293</td>
<td>12-68</td>
<td>84-228</td>
<td>10-84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. amplusps</td>
<td>120-170</td>
<td></td>
<td></td>
<td>110-150</td>
<td>50-55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. brumals</td>
<td>100-140</td>
<td></td>
<td></td>
<td>30-40</td>
<td>36-48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. cyclops</td>
<td>80-100</td>
<td></td>
<td></td>
<td>60-100</td>
<td>39-44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. ligustrina</td>
<td>90-120</td>
<td></td>
<td></td>
<td>40-60</td>
<td>44-52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. saligna</td>
<td>50-150</td>
<td></td>
<td></td>
<td>80-140</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2
Mineral composition of leaves of some species of *Acacia* (source: Vercoe 1986)

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>Ca (%)</th>
<th>P (%)</th>
<th>Na (%)</th>
<th>Mg (%)</th>
<th>S (%)</th>
<th>Zn (ppm)</th>
<th>Mn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. bidwillii</td>
<td>2.43</td>
<td>0.09</td>
<td>0.06</td>
<td>0.24</td>
<td>0.21</td>
<td>37</td>
<td>49</td>
</tr>
<tr>
<td>A. salicina</td>
<td>3.52</td>
<td>0.11</td>
<td>0.02</td>
<td>0.29</td>
<td>1.13</td>
<td>55</td>
<td>30</td>
</tr>
<tr>
<td>A. leptocarpa</td>
<td>0.97</td>
<td>0.06</td>
<td>0.25</td>
<td>0.37</td>
<td>0.18</td>
<td>75</td>
<td>622</td>
</tr>
<tr>
<td>A. aneura</td>
<td>1.39</td>
<td>0.07</td>
<td>0.01</td>
<td>0.26</td>
<td>0.17</td>
<td>76</td>
<td>863</td>
</tr>
<tr>
<td>A. melanoxylon</td>
<td>0.81</td>
<td>0.09</td>
<td>0.16</td>
<td>0.28</td>
<td>0.16</td>
<td>64</td>
<td>457</td>
</tr>
<tr>
<td>A. deanei</td>
<td>0.70</td>
<td>0.09</td>
<td>0.09</td>
<td>0.27</td>
<td>0.15</td>
<td>37</td>
<td>64</td>
</tr>
<tr>
<td>A. concurrens</td>
<td>0.97</td>
<td>0.05</td>
<td>0.25</td>
<td>0.26</td>
<td>0.18</td>
<td>47</td>
<td>917</td>
</tr>
<tr>
<td>A. stenophylla</td>
<td>2.08</td>
<td>0.10</td>
<td>0.16</td>
<td>0.35</td>
<td>0.58</td>
<td>123</td>
<td>42</td>
</tr>
<tr>
<td>A. glauccarpa</td>
<td>1.01</td>
<td>0.05</td>
<td>0.08</td>
<td>0.23</td>
<td>0.14</td>
<td>45</td>
<td>53</td>
</tr>
<tr>
<td>A. fimbrilata</td>
<td>0.30</td>
<td>0.06</td>
<td>0.13</td>
<td>0.25</td>
<td>0.12</td>
<td>33</td>
<td>83</td>
</tr>
</tbody>
</table>

(1986) found that copper was at levels that may be toxic to sheep, but copper contamination of samples could not be ruled out. Other minerals (Table 2) were at acceptable levels.

Protein levels provided by plant analysis are often a misleading indication of protein available to animals consuming the plants. This is partly due to the methods used to determine protein in the plant and partly to the processing and absorption of protein and other nitrogen compounds in the ruminant gastrointestinal tract. Most acacias examined have adequate crude protein contents for animal production. Again, there is considerable variation between species, ranging from 5.0% to 29.3% (Table 1).

An effective selection process will require screening a very large number of samples to determine plant quality. Near infrared reflectance spectroscopy (NIR) is a rapid, inexpensive and accurate method, requiring only small samples of plant material. NIR requires calibration with actual wet chemistry results from a subset of samples.

Pods and seeds

In general, pods have lower crude protein concentration and higher organic matter digestibility than foliage (Gohl 1981). In Australia and internationally there are few reports of the nutritional value of acacia pods and seeds for livestock despite the extensive knowledge of the use of acacias for human consumption and widespread consumption of ripe pods by animals in the dry season. In many areas, fruits are collected and brought to feed cattle or sheep or sold for fodder. In some regions animals are taken to the trees and fruit is consumed as it falls naturally or is knocked down by herders. In the semi-arid grazing regions of Australia *A. aneura* pods are much sought after by sheep, either on the trees or after they have ripened and fallen (Everist 1969). A number of other Australian acacias have been identified as being sought after by livestock (Maslin *et al*. 1998).

The fruits from *A. tortilis*, *A. albida*, *A. nilotica* and *A. sieberiana* have been evaluated in comparison with more traditional extracted protein meals (Tanner *et al*. 1990).
In general, *A. tortilis* and *A. albida* appear to have a nutritive value comparative to that of the extracted protein meal when offered as a supplement to maize stover. Lower growth rates and feed intakes occurred with *A. sieberiana* and *A. nilotica*, which the authors attributed to the phenolic compound and proanthocyanidins in the fruit. The extent of digestion of the seed in the fruits ranged from 54% for *A. tortilis* to 96% for *A. sieberiana*. Ingestion and passage of seed through the digestive tract and subsequent appearance in the faeces permits seed distribution and improved seed germination (Gwynne 1969). Low apparent digestion of *A. tortilis* seeds would mean a significant loss of potentially available nitrogen and energy to the animal but effective spread of the seeds. Lowry et al. (1993) found that *A. nilotica* fruit used as a supplement on dry Mitchell Grass hay stimulated the intake of hay while the sheep remained in negative nitrogen balance. Improved nutritional status with fruit supplementation had positive effects on both live weight and wool growth.

Cleaned seed has been proposed for human consumption and extensive studies of the composition have been undertaken of a number of acacia species (Brand and Maggiore 1991; Rivett et al. 1983). A number of species have been identified for potential commercial production for human consumption (Simpson and Chudleigh 2001). Although the emphasis in these studies has been on the potential for human consumption, the possibility of livestock utilisation should not be overlooked. Simpson and Chudleigh (2001) determined that harvesting technology may pose an economic constraint on the human-food industry, particularly in the early phase of establishing the industry. Livestock can self-harvest seed that may be uneconomic to harvest in the early stages of plantation and technology development, thus providing an economic return beyond that obtained from the harvested product alone.

Secondary compounds

Plants growing in inhospitable environments frequently contain secondary compounds that play a role in plant survival. Secondary compounds may function to enable the plant to tolerate the soil, water and climatic stress or may act as deterrents to grazing herbivores (e.g. tannin, oxalate, nitrates). Acacias are reported as having a wide range of secondary compounds apart from tannins, summarised in Table 3.

Tannins

Tannins are polyphenolic compounds found in many plants and are by far the most common secondary compound found in acacias of Australia. Tannins can be beneficial or detrimental to the ruminant, depending on concentration. From 2-4 % tannins in the diet protects protein from rumen degradation and increases the absorption of essential amino acids whereas 4-10% depresses voluntary feed intake (VFI) (Terrill et al. 1992; Barry and McNabb 1999). Benefits reported include increases in wool production, milk protein secretion, ovulation rate and the development of more nutritionally based and ecologically sustainable systems for disease

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>PART OF PLANT</th>
<th>TOXIN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. aneura</td>
<td>phyllode</td>
<td>oxalate</td>
<td>Gartner and Hurwood 1976</td>
</tr>
<tr>
<td>A. aneura</td>
<td>phyllode</td>
<td>tannin</td>
<td>Cunningham et al. 1981</td>
</tr>
<tr>
<td>A. burrowii</td>
<td>flowers</td>
<td>hydrogen cyanide</td>
<td></td>
</tr>
<tr>
<td>A. cambagei</td>
<td>phyllode</td>
<td>hydrogen cyanide</td>
<td></td>
</tr>
<tr>
<td>A. cambagei</td>
<td>timber, bark</td>
<td>oxalate</td>
<td></td>
</tr>
<tr>
<td>A. cana</td>
<td>browse</td>
<td>selenium</td>
<td></td>
</tr>
<tr>
<td>A. deanei</td>
<td>browse</td>
<td>hydrogen cyanide</td>
<td></td>
</tr>
<tr>
<td>A. decora</td>
<td>browse</td>
<td>abortive agent</td>
<td></td>
</tr>
<tr>
<td>A. doratoxylon</td>
<td>browse</td>
<td>cyanogenic glycoside</td>
<td></td>
</tr>
<tr>
<td>A. georgina</td>
<td>browse</td>
<td>hyrolytic enzyme only</td>
<td>Hall 1972</td>
</tr>
<tr>
<td>A. georgina</td>
<td>seeds/pods</td>
<td>fluoroacetate</td>
<td>Everist 1969</td>
</tr>
<tr>
<td>A. giraffae</td>
<td>unripe pods</td>
<td>unknown toxin</td>
<td>Gohl 1981</td>
</tr>
<tr>
<td>A. implexa</td>
<td>unripe pods</td>
<td>unknown toxin</td>
<td>Cunningham et al. 1981</td>
</tr>
<tr>
<td>A. longifolia</td>
<td>browse</td>
<td>hydrogen cyanide</td>
<td></td>
</tr>
<tr>
<td>A. murrayana</td>
<td>browse</td>
<td>unknown toxin</td>
<td></td>
</tr>
<tr>
<td>A. paradoxa</td>
<td>browse</td>
<td>unknown toxin</td>
<td></td>
</tr>
<tr>
<td>A. salicina</td>
<td>phyllode/bark</td>
<td>tannin</td>
<td>Hall 1972</td>
</tr>
<tr>
<td>A. salicina</td>
<td>pods</td>
<td>saponin</td>
<td>Hall 1972</td>
</tr>
<tr>
<td>A. saligna</td>
<td>browse/pods</td>
<td>tannins</td>
<td>Degen et al. 1998</td>
</tr>
<tr>
<td>A. berlandieri</td>
<td>browse</td>
<td>amines and alkaloids</td>
<td>Clements et al. 1997</td>
</tr>
<tr>
<td>46 Acacia spp.</td>
<td>foliage</td>
<td>hydrogen cyanide</td>
<td>Maslin et al. 1986</td>
</tr>
</tbody>
</table>
control in grazing animals. Tannins may also appear to have some protective effects against the establishment of, and tissue damage caused by, gastrointestinal nematodes (Kahn and Diaz-Hernandez 2000). Tannins levels in excess of 50 g/kg dry matter, on the other hand, can lead to low palatability, reduce digestibility, lower intake, inhibit digestive enzymes and be toxic to rumen micro-organisms (Kumar and Vaithiyanathan 1990). The availability of sulphur and iron also becomes limiting to animals consuming tannin-rich foliage. Sheep ingesting 0.9 g hydrolysable tannins per kg body weight can show signs of toxicity in 15 days. Animals such as mule deer, rats and mice have been shown to secrete proline-rich proteins in salivary and these constitute the first line of defence against ingested tannin. Unfortunately, the proline-rich protein defence is not present in domestic ruminant species to enable domestic livestock to consume plants high in tannins.

Oxalates

Oxalates cause precipitation of insoluble calcium oxalate in the rumen and kidneys, resulting in kidney damage, rumen stasis, gastroenteritis, calcium deficiency and possible death. Poisoning in sheep and cattle has been reported when pasture contains 7-8% oxalate (Hungerford 1990). Voluntary feed intake is significantly depressed by 3% oxalates (Burritt and Provenza 2000) and may contribute to the observed low intakes of acacia.

Nitrate

Nitrates are converted to nitrites in the rumen and, following absorption, result in the conversion of haemoglobin to methaemoglobin. Methaemoglobin is unable to bind oxygen and causes anoxia accompanied by increased pulse and respiration rates. As with oxalates, high nitrate also result in depressed feed intake. Toxic levels of nitrogen as nitrate are above 5000 mg N/kg DM in the diet (National Research Council 1974); 8000 mg N/kg DM reduces feed intake in the sheep by over 60% (Burritt and Provenza 2000).

Oxalate, fluoroacetate and hydrogen cyanide are well-recognised toxins to livestock (Barry and Blaney 1987). These compounds should be identified early in the evaluation of plants for animal production and only species or provenances with low levels should be considered for further evaluation for nutritional potential. A similar situation applies for amines and alkaloids in plant material. Where these compounds exist in plants within current grazing systems then animal management strategies must be put into place to minimise the impact of secondary compounds on animal production.

Reducing the impact of secondary compounds

There has been a heavy dependence on *A. aneura* as a drought feed in the semi-arid grazing areas of Australia. *A. aneura* contains both tannins and oxalates that result in a feed source with poor animal production despite its favourable concentrations of crude protein. Attempts have been made over a number of years to develop strategies to improve the value of this feed source because in some situations, for example drought, it is the only feed available.

Pritchard et al. (1992) showed that dosing sheep with polyethylene glycol (PEG) increased both intake and wool production in sheep fed with *A. aneura*. The sheep both retained and digested more nitrogen and sulphur than sheep supplemented with non-PEG. Economically, supplementation with PEG may not be viable.

Alternative but less efficient methods of improving digestion of *A. aneura* have also been developed for grazing ruminants. Supplementation of sheep with molasses increased intake and dry matter digestibility of *A. aneura* (Entwistle and Baird 1976; McMeniman 1976). Hoey et al. (1976) showed that the molasses response was due mainly to the sulphur content of molasses. Molasses is overcoming a likely tannin-induced sulphur deficiency in the rumen, leading to improved microbial activity in the rumen and thence to improved rumen fermentation and feed intake. Increases in intake and live weight gain can also be achieved by using 50 g/day/head of cottonseed meal to provide additional protein and sulphur (McMeniman et al. 1981). These responses have been confirmed in grazing experiments where *A. aneura* supplemented with molasses (or sulphur), phosphorus and protein meal has improved live weight responses, wool growth and reproductive performance compared to non-supplemented sheep (McMeniman and Little 1974; Niven and McMeniman 1983).

Overseas, extensive studies have also been carried out with *A. saligna* to improve its utilisation by ruminant livestock. Utilisation of PEG to improve the nutritional value of *A. saligna* by increasing intake, nitrogen retention, microbial nitrogen yield and daily gain has been achieved compared with the performance of non-supplemented sheep consuming *A. saligna* (Ben Salem et al. 2000). This study used PEG in supplementation blocks to improve the effective utilisation of tannin-rich acacias, in contrast to other studies that used more intensive means to apply the PEG.

The most economically viable strategy for using acacias may be to select for lower levels of secondary compounds and to include other plants in a mixed grazing system. Natural variation within a species has been exploited extensively in agriculture to produce desirable outcomes. To improve the forage value of *Lotus corniculatus* (another forage legume), accessions have been selected with medium and low condensed tannin concentrations (Waghorn et al. 1987). As well as variation in secondary compounds within species there is also environmental variation. Tangendjaja et al. (1986) showed significant changes in minosine and flavonol glycosides with leaf age, whereas tannin concentration changes with soil fertility (Barry and Manley 1986), and season affects concentrations of both tannins and cyanogenic glucosides (Dement and Mooney 1974).
GRAZING SYSTEMS BASED ON ACACIA

Acacias can contribute to ruminant diets in several ways. Historically in Australia acacias have been browsed in situ, in the natural vegetation, usually as drought feed when the native pastures disappeared. Acacias may be utilised by browsing plants or litter and/or in a cut-and-carry system. One such species where a combination of the preceding options maybe applied is *A. aneura*. When conditions are severe enough and forage no longer available from standing trees, branches are lopped to provide in situ supplement for livestock, but *A. aneura* provides only a maintenance diet despite extensive efforts to reduce the nutritional impact of tannins (Goodchild and McMeniman 1987). A selection program to identify and exploit *A. aneura* trees which have naturally lower tannin levels may be the most cost-effective solution, with huge potential for animal production in semi-arid regions.

Predicting animal performance

Once plant quality characteristics of selected acacias have been estimated, the nutritional management program for ruminants GrazFeed (Freer et al. 1997) may be used to estimate potential animal performance. For example, weaner wethers grazing acacia foliage and pods with an estimated digestibility of 47% and protein content of 9% are predicted to lose 80 g of live weight per day. Weaners offered this combination with dead pasture (51% digestibility) were estimated to have a modest weight gain (15 g/day), due to increased capacity to select higher quality components in the diet. However if acacia species/composition resulted in a digestibility of 55% and protein content of 11% then weaners could maintain live weight with an intake of 900 g/day of acacias alone. These predictions would require validation by animal feeding before recommendations could be made since no account of secondary compounds or limitations to forage acquisition is included in these estimates.

CONCLUSIONS

Utilisation of acacia in farming systems could be improved through selection, which will establish and provide feed for livestock during feed gaps and droughts, provided that issues of fodder accessibility and secondary compounds are overcome. Successful selection will require simultaneous determination of the critical levels of nutritional and anti-nutritional factors for ruminants and validation in feeding studies. The results would then be used for the selection of potentially useful plants, which is likely to be more cost-effective than nutritional interventions to overcome the effects of secondary compounds. Australia has a large proportion of the world’s acacia species. To date, their potential for animal production has not been studied in any systematic fashion, despite their extensive use in periods of nutritional stress.

REFERENCES

Tanner, J.C., Reed, J.D. and Owen, E. (1990). The nutritive value of fruits (pods and seeds) from four *Acacia* species compared with extracted noug (*Guizotia abyssinica*) meal as supplements to maize stover for Ethiopian highland sheep. *Animal Production* **51**, 127-133.

Vercoe, T.K. (1986). Fodder potential of selected Australian tree species. In *Australian Acacias in Developing Countries*, Proceedings of an international workshop held at the Forestry Training Centre, Gympie, Qld, Australia, 4-7 August 1986 (J.W.Turnbull, ed.), pp. 95-100. ACIAR Proceedings no. 16, Australian Centre for International Research, Canberra.